

Workshop on advanced electronic solutions

for high performance vehicle processors

18 May 2021 at 14h00

Virtual Workshop organised by EDM Forum & Hiper consortium

Agenda

14h00: HIPER: Introduction to collaborative research project on High Performance Vehicle Processors

<u>Bart Vandevelde</u> – imec

14h20: Advanced 3D printing solutions for advanced processor cooling

Part A: 3D printing technology

<u>Willem Verleysen</u> – Materialise

Part B: Simulation and characterisation of cooling performance of

3D printed heat sinks

<u>Majid Nazemi</u> – Materialise & <u>Antonio Pappaterra</u> – imec

15h10: Low melting point solder technology for advanced processor components

Ralph Lauwaert - Interflux Electronics

15h40: Final comments & questions

15h50: End

uniec

Q&A

Please use the "chat" box to ask your questions

Questions will be asked just after the talk

innec

HIPER: Introduction to collaborative research project on High

Performance Vehicle Processors

Speaker: Bart Vandevelde – imec – PPS/EA

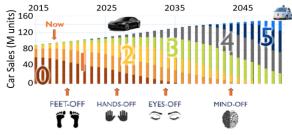
Bart.Vandevelde@imec.be

Dissiemination activity with the HIPER project

- HIPER: High Performance Vehicle Computer and Communication System for Autonomous Driving
- Collaborative research program under PENTA-Eureka platform

- Financial support through local funding agencies
 - Flanders:Vlaio

Wenta


HiPer (High Performance Vehicle Computer and Communication System for Autonomous Driving) Megatrend "Autonomous Vehicles"

\$77 billion market potential in 2035 2)

Target: **Zero** fatalities and **accidents** safety as well as ADAS technologies.

80% of the top OEMs plan to build highly autonomous ¹⁾

Autonomous Driving

By 2035, more than 50% of all vehicles sold will show level 3 capabilities!

Source: E.Celier et al., Yole: http://www.yole.fr

Robotaxis will become

a **cheaper** mobility option than private vehicles in urban environments in 2030 ¹⁾

Transportation costs

-40% per km ¹⁾

L4 share of new vehicles is expected to reach

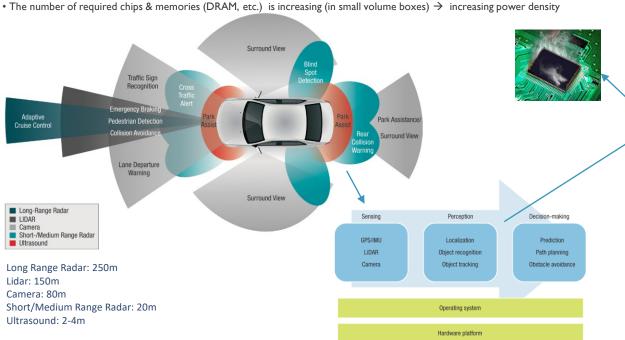
17% by 2035 in EU ¹⁾

Disruptive megatrends require

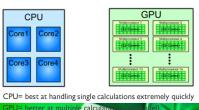
new core competencies, new

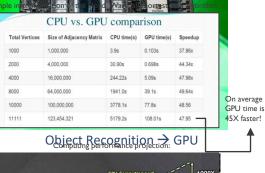
actions, and a new way of thinking 1)

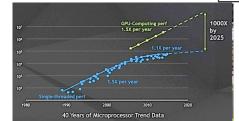
¹⁾ MCKINSEY RACE 2050 – A vision for the European automotive Industry


²⁾ Boston Consulting Group

ADAS technologies


ADAS technologies


AD: From Sensing to Perception

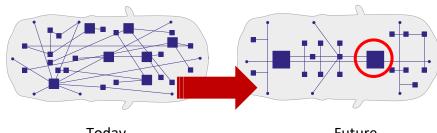

- Autonomous driving requires high power GPUs to process the different real-time sensors data
- For safety backup emergency solutions are mandatory on the vehicle, increasing the number of electronic components

CPU/GPU Architecture Comparison

HiPer

High **Per**formance Vehicle Computer and Communication System for Autonomous Driving

Trends

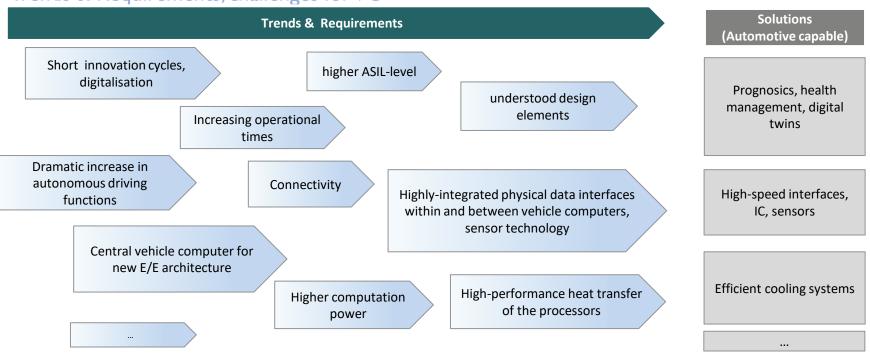

- Expansion of functional, autonomous driving functions thus E/E architecture change to central vehicle computers
- Shorter innovation cycles, digitalization
- Increase in driving ranges, operating time

Vehicle computers are the physical "heart" of the E/E architecture

In addition to the zone control units, a key to the cars of the future lies in new high-performance vehicle computers for bundling the functional software. These are thus an important switch point for connected and automated driving.

E/E-Architektur

Paradigm shift from a domain-specific to a cross-domain and centralised E/E architecture with a few but very powerful vehicle computers instead of many individual ECUs.


Today Future

Change in the E/E-architecture requires high-performance vehicle computers

HiPer

Trends & Requirements, challenges for VC

To realize innovative technology solutions for high-performance vehicle computers for autonoumous driving, public funded project HiPer was initiated

HiPer

Public funded Project HiPer (PENTA labelled)

PARTNERS

Advanced Packaging Center BV

Audi AG

Boschman Technologies BV

Chemnitzer Werkstoffmechanik GmbH

Delft University of Technology

Dynardo GmbH

Eindhoven University of Technology

Fastree3D BV

Fraunhofer Institute (ENAS)

Glück Industrie-Elektronik GmbH

IMEC

Interflux

Materialise

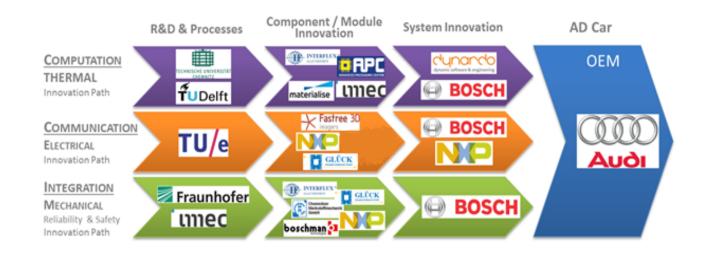
NXP Semiconductors

Robert Bosch GmbH

Technical University of Chemnitz

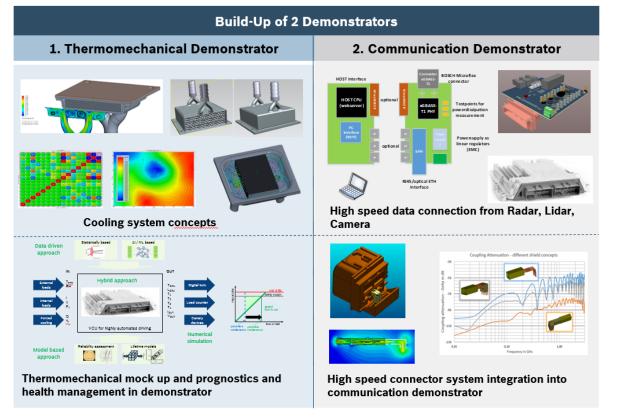
COUNTRIES INVOLVED

Goals / Objectives


- Level 5 AD cars need much more computational power at highest functional safety level (processors generate up to 300W)
- Comprehensive perception of the surrounding environment in real-time: deploying multiple video/radar/lidar/ultrasonic sensors
- Final data fusion will be done in centralized HPVC units with new connectors, wiring harness solutions and communication chips for higher data rates
- Reliability and functional safety of AD electronic-systems must be increased

PROJECT DURATION

From 24/06/2019 to 23/06/2022


HiPer PENTA Review Meeting 19.06.2020 3 main technological pathes

Based on the main technological challenges 3 project pathes were established

mec

embracing a better life