

A novel liquid-based heat sink for thermal management of high-performance processors

Package arrangement of layers

Different proposed cooling concepts

Objective

- Design a cooler to achieve maximum chip temp of 90°C While:
 - Flow rate < 5 lit/min
 - Cooling fluid = water/glycol @ 65°C
 - Pressure drop < 250 mbar</p>
 - ➤ Ambient temperature = 85°C

Conductive Adhesive and Grease

$$\begin{cases} K_{TIM_1} = 5 \\ K_{TIM_2} = 1 \end{cases}$$
$$T_{chip} = 122^{\circ}\text{C}$$

Different proposed cooling concepts

Traditional approach

- Generate a new design (first iteration)
- Print the design (expensive)
- Do experiments to measure the performance (expensive)
- Get feedback to improve the design
- Hundreds of iterations considering tens of design parameters

Computational Fluid Dynamics (CFD)

 Numerical schemes to solve conservation equations (momentum, mass, and energy) over a domain

$$\begin{aligned} \mathit{Mass}: \quad & \frac{\partial \rho}{\partial t} + \mathit{div}(\rho \, \mathbf{u}) = 0 \\ x - \mathit{momentum}: \quad & \frac{\partial (\rho \mathit{u})}{\partial t} + \mathit{div}(\rho \mathit{u} \mathbf{u}) = -\frac{\partial p}{\partial x} + \mathit{div}(\mu \, \mathit{grad} \, \mathit{u}) + S_{\mathit{Mx}} \\ y - \mathit{momentum}: \quad & \frac{\partial (\rho \mathit{v})}{\partial t} + \mathit{div}(\rho \mathit{v} \mathbf{u}) = -\frac{\partial p}{\partial y} + \mathit{div}(\mu \, \mathit{grad} \, \mathit{v}) + S_{\mathit{My}} \\ z - \mathit{momentum}: \quad & \frac{\partial (\rho \mathit{w})}{\partial t} + \mathit{div}(\rho \mathit{w} \mathbf{u}) = -\frac{\partial p}{\partial z} + \mathit{div}(\mu \, \mathit{grad} \, \mathit{w}) + S_{\mathit{Mz}} \\ \mathit{Internal energy}: \quad & \frac{\partial (\rho \mathit{i})}{\partial t} + \mathit{div}(\rho \mathit{i} \mathbf{u}) = -p \, \mathit{div} \, \mathbf{u} + \mathit{div}(k \, \mathit{grad} \, T) + \Phi + S_{\mathit{i}} \end{aligned}$$

Computational Fluid Dynamics (CFD)

- A bunch of numerical schemes to solve conservation equations (momentum, mass, and energy) over a domain
- Input:
 - Geometry (domain)
 - Material properties (thermal, fluid, ...)
 - Flow regime (laminar or turbulent)
 - Boundary conditions

Computational Fluid Dynamics (CFD)

- A bunch of numerical schemes to solve conservation equations (momentum, mass, and energy) over a domain
- Output:
 - Velocity field
 - Spatiotemporal distribution of pressure
 - Spatiotemporal distribution of temperature

CFD packages

- Ansys CFX
- Comsol multiphysics
- Siemens FLoEFD
- Cradle

The design

a cross-section through the cooler with a) Inlet, b) distribution zone, c) cooling zone, d) collection zone, and e) outlet.

Experimental setup

Thermal test vehicle to mimic an actual processor

- **→** 9.8×9.8×0.675mm³ test chip
 - Controllable resistive heaters
 - Integrated temperature sensor
- 25×20×1.6mm³ substrate
- thermal joint compound

The hydraulic circuit

- Differential pressure
- Flow meter
- Heat exchanger and reservoir

Experimenting conditions

- Testing conditions:
 - ► Ambient temperature = 22 ± 1°C
 - Cooling fluid temperature = 20°C
 - Cooling flow mass flow rate = 2.55 L/min
 - Generating 50W in the mock-up chip

Simulation results

Predicted 89°C VS measured 81.9°C

Predicted 24mbar VS measured 106mbar

Discrepancy between measured and predicted values

Pressure drop:

Trapped powder

Geometric deviations

Discrepancy between measured and predicted values

- Pressure drop:
 - Geometric deviations
 - CT scanning of the component
 - Creating a STL surface out of the fluid cavity
 - Repairing the created surface
 - Generating a CAD model out of the surface
 - Creating a solid object out of the watertight surface

Predicted 125mbar vs measured 106mbar

Future plans

- Accounting for the actual geometry
- Separate research to improve the conductivity of TIM