Inec

Direct Jet-Impingement Cooling Solution

Presenter: Antonio Pappaterra

Appendix 7.

Case Study I: based on 20x20mm die

Case Study 2: based on 9.8x9.8mm die

unec

Appendix 7.

unec

Case Study I: based on 20x20mm die

TIM (thermal interface material) limits \rightarrow Direct jet-impingement

 R_{c1}

BLT

Ζ

Jet-impingement higher htc than . traditional forced convection

(boundary layers are much thinner, and often the spent flow after the impingement serves to turbulate the surrounding fluid)

unec

Direct Liquid Jet-Impingement Cooling Solution for AD HPVC

umec

P=300W (20x20 die)

- Liquid cooling
- Direct Jet-Impingement (no TIM)
- Lidless
- Enhanced heat path

- Tmax < 105degC (Ambitious target 90degC)
- Pdrop< 250 mbar

Direct Liquid Jet-Impingement Cooling Solution for AD HPVC

Appendix 7.

Case Study I: based on 20x20mm die

Case Study 2: based on 9.8x9.8mm die

unec

Concept study: why a vertical layout (inlet/outlet)?

• Volume/External encumbrance (with pipes/connectors) \rightarrow Other elements on-plane

ເກາຍc

Final cooler design

/ Sealing
//Extended cooler structure
Outflow / / Inflow Inflow Outflow
chamber nozzles chamber nozzles
Grid array (fins) structure
Impingement chamber

Main Features:

- Dimensions 35*35*26.5mm
- N.34 inflow nozzles ("x" diameter)
- N.47 outflow nozzles
 - N.36 with "x" diameter
 - N.II with "y" diameter (bigger)
- 5mm Inlet/Outlet ports inner diameter
- Grid array (fins) structure

umec

Overall CFD setting

Turbulence model: K-w SST (ref. paper)

- <u>Turbulence BC</u>: preliminary analytical calculations
- Intensity
- Length scale

Liquid: Glycol-water (58%) \rightarrow Temp. dependent properties

Power: 300W (bottom die)

VFR, Tfluid & Tamb: Based on "Hot Condition" (previous slide)

Condition n.1:

• Sealing region (void) & ext walls adiabatic

Condition n.2:

- Heat transfer with Ext Environment
- I W/m-k set @ sealing region/void

Solid Material Properties Assigned

Coolant -Die (Si) -L1FC -Interposer -L2BGA -Motherboard -Elastomer Casing -

Turbulence model	Computational cost (time required)	Impingement jet transfer coefficient prediction	Ability to predict secondary peak
k-ε	**** Low cost	★ Poor: Nu error of 15–60%	★ Poor
k-w	$\star \star \star \star$ Low-moderate	\bigstar Poor-fair: anticipate Nu errors of at least 10–30%	★★ Fair: may have incorrect location or magnitude
Realizable k - ε and other k - ε variations	★★★★ Low	★★ Poor-fair: expect Nu errors of at least 15–30%	★★ Poor-fair: may have incorrect location or magnitude
Algebraic stress model	★★★★ Low	★★ Poor-fair: anticipate Nu errors of at least 10-30%	★ Poor
Reynolds stress model (full SMC)	★★ Moderate–high	★ Poor: anticipate Nu errors of 25–100%	★★ Fair: may have incorrect location or magnitude
Shear stress transport (SST), hybrid method	$\star \star \star$ Low-moderate	★★★ Good: typical Nu errors of 20–40%	★★ Fair
$v^2 f$	★★★ Moderate	$\star \star \star \star$ Excellent: anticipate Nu errors of 2–30%	$\star \star \star \star$ Excellent
DNS/LES time-variant models	★ Extremely high (DNS available for low <i>Re</i> only)	$\star \star \star \star$ Good-Excellent	$\star \star \star \star$ Good–Excellent

umec

Final cooler design results

Top & bottom die (condition n.1)

Resume table equivalent HTC [W/m^2-K]				
Condition (BC)	Surface Die	Temperature considered	HTC calculated	
n.l	Top surface (20x20)	Tavg* Die	3.76E+04	
		Tavg* @TopSurfDie	5.25E+04	
		Tmax** Die	3.16E+04	
		Tavg* Die	1.79E+04	
	All	Tavg* @TopSurfDie	2.50E+04	
		Tmax** Die	I.50E+04	
n.2		Tavg* Die	3.45E+04	1
	Top surface (20x20)	Tavg* @TopSurfDie	3.72E+04	
		Tmax** Die	2.74E+04	
		Tavg* Die	1.64E+04	IT.
	All	Tavg* @TopSurfDie	I.77E+04	
		Tmax** Die	I.30E+04	

The normalized thermal resistance is equal to: $R^* = 0.076 \text{ K}^* \text{cm}^2 / \text{W} \text{ (condition n.1)}$ $R^* = 0.088 \text{ K}^* \text{cm}^2 / \text{W} \text{ (condition n.2)}$

ເຫຍດ

Areas of improvements investigated with CFD

2 vortexes (inflow chamber)

Investigation of nozzles locations (layout), nozzles diameters and numbers

ເງຍອ

Areas of improvements investigated with CFD: zoom in "Nozzles"

Originally higher heat extraction in the middle (momentum)

Enlarging nozzles on the external sides/corners guiding more fluid peripherally generates secondary drawbacks

Different nozzles configurations simulated showed (contrasting needs and behaviors):

- Need to guide fluid on the external sides
- Need to compensate higher vertical momentum in the center vs external areas
- Need to have locally energetic fluid (high momentum, thus high velocity and small diameters)
- Need to not trap locally the fluid (outflow vs inflow ratio)
- Need to have limited vena contracta at nozzles entrance (relative orientation)
- Need to limit pressure drop (better less nozzles with bigger diameters)

Local ratio between outlet and inlet nozzles cross section area is a key factor

ເງຍອ

Appendix 7.

Case Study I: based on 20x20mm die

Case Study 2: based on 9.8x9.8mm die

unec

Prototyped Metal 3d printed cooler

- Scaled basic version (no optimal features)
- Supports generated
- Housing Nanotest chip

Metal Prototyped cooler

Nanotest thermovehicle chip (9.8*9.8 mm die)

Prototyped Metal 3d printed cooler: performances

- <u>Normalized Thermal Resistance [K*cm²/W]</u> of 0.26
- <u>Pressure drop of 168mbar</u>

CFD simulations results vs testing

ເງງອ

Appendix 7.

unec

Case Study I: based on 20x20mm die

Future trend: boiling/phase change cooling

Sample CFD pictures

ເງຍອ

Future trend: embedded cooling (μ Channels)

- Embedded cooling µChannels Fabricated in Device
- Reduction of Volume/external encumbrance and weight
- Really suitable in power electronics applications

Enabler:

Manufacturing technology and cost

embracing a better life

Appendix

Case Study I: based on 20x20mm die

Case Study 2: based on 9.8x9.8mm die

unec

Appendix: AD vehicle computer thermal requirements

High Power vehicle computer:

Challenges:

 Liquid system cooling
(dissipating 300W) with enhanced heat path

> Approx. x9 times TDP commercial entry level CPU (Core i3-10305T: 35W)

ເງຍອ

Appendix: overall CFD setting

<u>Turbulence model</u>: K-w SST (ref. paper)

<u>Turbulence BC</u>: preliminary analytical calculations

- Intensity
- Length scale

<u>Liquid</u>: Glycol-water (58%) \rightarrow Temp. dependent properties

Power: 300W (bottom die)

VFR, Tfluid & Tamb: Based on "Hot Condition" (previous slide)

Condition n.1:

• Sealing region (void) & ext walls adiabatic

Condition n.2:

- Heat transfer with Ext Environment
- I W/m-k set @ sealing region/void

Solid Material Properties Assigned

Coolant Die (Si) L1FC Interposer L2BGA Motherboard Elastomer Casing

Turbulence model	Computational cost (time required)	Impingement jet transfer coefficient prediction	Ability to predict secondary peak
k-ε	★★★★ Low cost	★ Poor: Nu error of 15-60%	★ Poor
κ-ω	$\star \star \star \star$ Low-moderate	\bigstar Poor-fair: anticipate Nu errors of at least 10–30%	★★ Fair: may have incorrect location or magnitude
Realizable k - ε and other k - ε variations	★★★★ Low	★★ Poor-fair: expect Nu errors of at least 15–30%	★★ Poor-fair: may have incorrect location or magnitude
Algebraic stress model	★★★★ Low	\bigstar Poor-fair: anticipate Nu errors of at least 10–30%	★ Poor
Reynolds stress model (full SMC)	★★ Moderate-high	★ Poor: anticipate Nu errors of 25–100%	★★ Fair: may have incorrect location or magnitude
Shear stress transport (SST), hybrid method	$\star \star \star$ Low-moderate	$\star \star \star$ Good: typical Nu errors of 20–40%	★★ Fair
$v^2 f$	★★★ Moderate	$\star \star \star \star$ Excellent: anticipate Nu errors of 2–30%	$\star \star \star \star$ Excellent
DNS/LES time-variant models	★ Extremely high (DNS available for low <i>Re</i> only)	$\star \star \star \star$ Good–Excellent	$\star \star \star \star$ Good-Excellent

ເກາec

Areas of improvements investigated with CFD: zoom in "Grid array"

- Grid array (below some outflow nozzles) ٠ 2.60 75 45 in [C /75/45 85.74
- Enhanced heat transfer surface •
- Tidy guided flow (less stagnation & recirculation) •

74. 60

74.60 81.71

Figure 1: Temperature distributions on top

(above) and bottom (below) die surfaces

88, 81

• Better temperature distribution (hot spots reduction)

Appendix: Final cooler design CFD sensitivity analysis

Mesh Setting:

- 2.19 M elements (400K Octrees)
- 16 Prism Layers→ 2.8% error Pdrop

ເງຍອ

ເກາຍc